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Abstract-The representation of the classical formula that contains Euler's theorem on three­
dimensional rigid body rotations, as an orthogonal tensor in three dimensions, is extended to a six­
dimensional representation as a tool for accomplishing coordinate transformations of the aniso­
tropic elasticity tensor.

1. INTRODUCTION

Euler's theorem on the representation of rigid body rotations (Brand, 1947; Lamb, 1929;
Goldstein, 1950; Pars, 1979; Whittaker, 1937) has many forms. The theorem concerns the
characterization of a three-dimensional rotation by an angle () about a specific axis, here
indicated by the unit vector p. This theorem is represented by the action of a three­
dimensional orthogonal tensor Q determined from the angle () and the unit vector p by the
formula (Beatty, 1966, 1977; Finger, 1892; Gurtin, 1976; Truesdell and Toupin, 1960)

Q = 1+sin ()P+ (1 - cos ()P2 = eOP
, (1)

where the three-dimensional skew-symmetric tensor P with components Pi) is introduced
to represent the unit vector p,

-P3

o (2)

and eOP is the exponential matrix function. An elementary derivation of the result (1) using
the exponential matrix function eOP is given in the Appendix. The exponential representation
(1) is also of interest in computational solid mechanics for integrating incremental consti­
tutive relations (Balendran and Nemat Nasser, 1994). It is easy to show that P has the
following properties:

P= _pT , Pp=O, p 2 =pQ9p_l, p 3 = -P. (3)

In this paper we show that, in a space of six dimensions, the representation of a three­
dimensional rotation by an angle () about a specific axis, characterized by the unit vector p,
is represented as a six-dimensional orthogonal tensor by the formula
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Q = i +sin8P+ (1-cos 8)P2+tsin 8(1-cos 8)(P+P3
) +1;(l-cos 8)2(P2+p4

) = eOi',

(4)

where the six-dimensional skew-symmetric tensor P with components

0 0 0 0 fiP2 -fiP3

0 0 0 -fiPI 0 fiP3

P=
0 0 0 fip) -fiP2 0

0 J2p) ~fiPI 0 P3 -P2

-fiP2 0 fiP2 -P3 0 PI

fiP3 -fiP3 0 P2 -PI 0

satisfies the following conditions:

P = _pT , p 5 +5p3 +4P = 0, p 6 +5p4 +4p2 = O.

(5)

(6)

Matrices of six-dimensional tensor components are distinguished with circumflexes. Note
that formulae (1) and (4) show that a change in the sense of p is the same as a reversal of
the direction of the angle of rotation 8; thus formulae (1) and (4) are invariant under the
change of variables from p, 8 to -p, -8.

Formula (4) is of interest in anisotropic elasticity because the elasticity tensor can be
expressed as a second rank tensor in six dimensions (Mehrabadi and Cowin, 1990) as well
as in its more traditional representation as a fourth rank tensor in three dimensions.
Orthogonal transformations in six dimensions can then be used to represent orthogonal
transformations in three dimensions as described in section 2. Formula (4) connects the
geometric operation in three dimensions to the matrix algebra of six dimensions. Since the
tensor transformation rules for a second rank tensor rather than a fourth rank tensor
apply, transformations of the reference coordinate system for the elasticity tensor may be
accomplished in a very straightforward fashion using matrix multiplication. It follows that
one of the contemporary symbolic algebra computational programs (Maple, Mathematica,
MacSyma, Matlab, etc.) may easily be employed to accomplish coordinate transformations.
In these programs, transformations in the six-dimensional space are six-by-six matrix
multiplications that are quickly entered and computed with the symbolic algebra software.
The fact that it is neither notationally nor computationally easy to do specific fourth rank
tensor transformations in three dimensions has hindered the presentation of this material
in the past.

The derivation offormula (4) is given in section 3 and an example of its application is
given in section 4. The example is the development of a matrix representation for monoclinic
symmetry.

2. THE SIX-DIMENSIONAL NOTATION

The anisotropic form of Hooke's law is often written in indicial notation as Tij = CijkmEkm,

where the Cijkm are the components of the three-dimensional fourth rank elasticity tensor.
There are three important symmetry restrictions on the fourth rank tensor components
Cijkm' These restrictions, which require that components with the subscripts ijkm,jikm and
kmij be equal, follow from the symmetry of the stress tensor, the symmetry of the strain
tensor, and the requirement that no work be produced by the elastic material in a closed
loading cycle, respectively. Written as a linear transformation in six dimensions, Hooke's
law has the representation T = cE or



Six-dimensional orthogonal tensor representation

TIl CII Cl2 Cl3 CI4 CI 5 CI 6 Ell

T 22 CI2 C22 C23 C24 C25 C26 E 22

T 33 CI3 C23 C33 C34 C35 C36 E 33

T 23 CI4 C24 C34 C44 C4 5 C46 2E23

T I3 CI5 C25 C35 C45 C55 C56 2El3

T I2 CI6 C26 C36 C46 C56 C66 2El2
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(7)

in the two subscript notation of Voigt (1910) for the components of C,jkm. In the Voigt
notation the components of c and C ijkm are related by replacing the six-dimensional indices
1,2,3,4,5 and 6 by the pairs of three-dimensional indices 1,2 and 3; thus, 1,2,3,4,5 and
6 become 11, 22, 33, 23 or 32,13 or 31,12 or 21, respectively. The members of the paired
indices 23 or 32,13 or 31,12 or 21 are equivalent because of the symmetry of the tensors
of stress and strain. The matrix c in eqn (7) is not a matrix of tensor components in six
dimensions, although it is formed from the components of a three-dimensional fourth rank
tensor.

Six-dimensional vector bases and notations are introduced so that stress and strain
can be considered as vectors in a six-dimensional vector space as well as second rank tensors
in three-dimensional Cartesian reference systems. The six-dimensional quantities will be
indicated by a circumflex; thus, the six-dimensional vectors of stress and strain will be
denoted by T and E, respectively, whereas the three-dimensional second rank tensors of
stress and strain are denoted by T and E, respectively. The direct relationship between the
components of Tand T, and Eand E, are the dual representations given by

T1 TIl £1 Ell

T2
T 22 £2 E 22

T=
T3

T 33

E=
£3 E 33

T4 }2T23 £4 }2E23
(8)

T5 }2Tl3 £5 }2E13

T6 }2Tl2 £6 }2E12

where the shearing components of these new six-dimensional stress and strain vectors are
the shearing components of these three-dimensional stress and strain tensors multiplied by
--/2. This J2 factor ensures that the scalar product of the two six-dimensional vectors is
equal to the trace of the product of the corresponding second rank tensors, T· E = tr TE.
Introducing the new notation of eqn (8) into eqn (7), eqn (7) can be rewritten in the form

T=cE, (9)

where cis a new six-by-six matrix. The matrix form of eqn (9) is given by

TIl CII cl2 Cl3 }2C14 }2C15 }2CI6 Ell

T 22 Cl2 C22 C23 --/2C24 }2C25 }2C26 E 22

T 33 CI3 C23 C33 }2C34 }2C35 }2C36 E 33

}2T23 }2CI4 --/2C24 }2C34 2C44 2C45 2C46 }2E23

}2T13 }2C15 --/2C25 }2C35 2C45 2C55 2C56 }2E13

}2TI2 }2C16 }2C26 }2C36 2C46 2C56 2C66 }2E12

(10)

or
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f) CII C12 C13 CI4 CIS. CI6 £)
f2 C\2 Cn C23 C24 C 25 C2 6 £2
f 3 C 13 C23 C33 C34 C 35 C3 6 £3
f4 C I4 C24 C34 C44 C45 C46 £4
f 5 CIS C25 C35 C45 C 55 CS6 £5
f 6 C I 6 C26 C36 C46 C56 C66 £6

The relationship between the non-tensorial Voigt notation c and the six-dimensional second
rank tensor components cis easily constructed from eqn (10) ; a table of this relationship
is given in Mehrabadi and Cowin (1990).

The symmetric matrix ccan be shown (Mehrabadi and Cowin, 1990) to represent the
components of a second rank tensor in a six-dimensional space, whereas the components
of the matrix c appearing in eqn (7) do not form a tensor. Two reference bases or coordinate
systems will be employed in three-dimensional space; these two systems have equivalent
bases in six-dimensional space. The first basis is called the Latin basis or coordinate system
because Latin letters are used to indicate indices associated with the system; it has base
vectors ei , i = 1,2,3. The second basis is exactly like the first but a slightly different notation
is employed in order to distinguish it from the first. For the other system Greek indices are
employed and the base vectors are e~, rx = I, II, III. The orthogonal transformation from
the Greek to the Latin system in three dimensions is represented by the matrix Q with
components Qi~ = ei ' e~. The orthogonal transformation from the Greek to the Latin bases
in six dimensions is represented by Q, where Q is a six-by-six matrix of tensor components,

Qu Qm QUII Quv QIV QIVI
Q21 Q2Il Q2IIl Q2IV Q2V Q2VI

Q=
Q31 Q3Il Q3IIl Q3IV Q3V Q3VI

(11)
Q41 Q4II Q4IIl Q4IV Q4V Q4VI
Q51 Q51I Q5IIl Q5IV Qsv QSVI
Q61 Q61I Q6IIl Q6IV Q6V Q6VI

The six-dimensional bases, ej, I, J, K = 1, 2, 3,4, 5,6 and eA, i\. = I, II, III, IV, V, VI, are
associated with the three-dimensional bases ej, i = 1,2,3 and e~, rx = I, II, III, respectively.
Using these bases, the components of a six-dimensional second rank tensor BJK are related
to the components of the three-dimensional fourth rank tensor Bijkm by

(12)

In the special case of the orthogonal tensors Q and Q, which are both second rank and
two-space tensors, the relationship (12) between the components of the two-space, six­
dimensional second rank tensor QKA and the two-space, three-dimensional fourth rank
tensor Qik~fJ is written as

(13)

where the fourth rank two-space tensor in three dimensions is formed using the tensor
transformation law for fourth rank tensors in three dimensions as a guide, thus

(14)

The detailed relationship between components is as follows (Mehrabadi and Cowin, 1990):
the elements in the upper left hand three-by-three matrix of eqn (11) are given in terms of
the elements of Q by
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QKA = QiaQia, no sum on IJ(, K = i = 1,2, 3 ; A = IJ( = I, II, III ; (15)

the elements in the upper right hand three-by-three matrix of eqn (11) are given in terms
of the elements of Q by

QKIV = .J2QmQmI' QKV = .J2QiIQmI' QKVI = .J2QiIQm,
no sum on i, K = i = 1, 2, 3 ; (16)

the elements in the lower left hand three-by-three matrix of eqn (11) are given in terms of
the elements of Q by

Q4A = .J2Q2aQ3a, Q5A = .J2QlaQ3a, Q6A = .J2QlaQ2a,

no sum on IX, A = IJ( = I, II, III ; (17)

and the elements in the lower right hand three-by-three matrix of eqn (11) are given in
terms of the elements of Q by

(18)

To see that Q is an orthogonal matrix in six dimensions requires some algebraic manipu­
lation. The proof rests on the orthogonality of the three-dimensional Q:

(19)

It should be noted that, while it is always possible to find Qgiven Q by use of eqns
(15)-(18), it is not possible to determine Q unambiguously given Q because the components
of Qare squared to determine the components ofQ and this fact introduces a sign ambiguity
in the inverse calculation. To see this non-uniqueness note that both Q = 1 and Q = -1
correspond to Q = 1. Mehrabadi and Cowin (1990) show that c transforms as a second
rank tensor in a six-dimensional space,

(20)

3. THE SIX-DIMENSIONAL REPRESENTATION OF THREE-DIMENSIONAL ROTATION

The six-dimensional representation [formula (4)] for the rotation will be derived in this
section. This derivation simplifies a great deal if we introduce the notation

(21)

where A and B are any two second-rank tensors in three dimensions and [A, B] is a fourth
rank tensor in three dimensions. Note that the fourth rank tensor [A, B] introduced in eqn
(21) has the following properties:

[A, B] = [B, A], [A, - B] = - [A, B],

and the following multiplication formula

(22)
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[A, BLrs[C, D]rskm = [AC, BDlijkm+ [AD, BC]ijkm

[A,B][C,D] = [AC,BD]+ [AD,BC].

(23a)

(23b)

In this new notation formula (14) may be written as

(24)

The first step in the derivation of formula (4) is to substitute for Q from formula (1)
into eqn (24), thus

MQ, Q];kaP = ~[1, 1];kap+sin 8[1, PlikaP+ (I-cos 8)[1, p2likaP

+~sin2 8[P,P]ikaP+sin 8(1-cos 8)[P, p2hap+~(1-cos8)2[p2, P2hap. (25)

The second step is to employ eqn (13) and (24) in eqn (25), thus

Q = 1+sin8<1,P)+(1-cos8)<1,P2)+isin28<P,P)

+ sin 8(1-cos 8)<P, p 2) +~(1-cos 8)2<p2, p 2), (26)

where

and it is easily shown that

1 = ~<1, 1).

(27)

(28)

The third step is to note that, from its location as the term proportional to sin 8 in eqn (26),
it may be seen that the six-dimensional analog of the tensor P is <1, P), thus <1, P) is
defined as P :

P=(1,P). (29)

The fourth step is to obtain an expression for Q in terms of P. Thus the four quantities
(1,P2), <P,P), <P,P2) and <P2,P2) appearing in eqn (26) must be calculated as poly­
nomials of P. To this end the formula (23) and the identity (3)4 are employed, thus

p2 = (1, P)(1, P) = (1, p 2) + <P, P)

p3 = -(1,P)+3<P,P2)

p4 = _(1,P2)_4<P,P)+3<p2,P2).

(30)

(31)

(32)

Solving for the three quantities (1, P 2), <P, P 2) and <p2, p 2) in terms of the powers of P
and <P, P), it follows from eqns (30), (31) and (32) that

(33)

(34)
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(35)

The final step, that of obtaining formula (4), is accomplished by substituting eqns (33),
(34) and (35) into eqn (26) and observing that all the terms involving <P, P) cancel out.

For the proof of the exponential matrix function representation (4) of Q, expressions
for higher powers of P are needed. An expression for p 5 can be found from eqns (29) and
(32), thus

(36)

and it follows from eqn (31) that

(37)

when <P, p 2) is eliminated and eqn (29) employed. This result is given as the property (6)2
of P. The Cayley-Hamilton theorem for P is given by

(38)

This shows that P has eigenvalues 0, 0, 2i, - 2i, i, - i. Using eqns (3), (29), (33), (34), (35),
(37) and (38), it follows that

trP = 0, trP3 = 0, trP5 = 0, trP2 = -10, trP4 = 34, trP6 = -130. (39)

For comparison, the Cayley-Hamilton theorem (Finkbiner, 1960; Frazer et al., 1960;
Mirsky, 1990) for a six-by-six skew-symmetric matrix W is

(40)

The formulae for the powers ofP are found using eqn (37),

(41)

and

(42)

The proof of the exponential matrix function representation formula [(4)] of Q now
parallels the derivation in the Appendix of the analogous three-dimensional (l) exponential
matrix function formula. Employing the properties of exponential functions of matrices
given in the Appendix, it is easy to see that ifW is an N-dimensional skew-symmetric matrix
and B = eXw is an N-by-N matrix, then B is orthogonal. Here we wish to prove that the
orthogonal tensor associated with the skew-symmetric tensor P, i.e. eel', is the orthogonal
tensor Q given by eqn (4). To this end we employ the definition of the exponential matrix
series in the special form

_ 00 8npn ~ 82 ~ 00 (8P)2n+3 00 (8P)2n+4
eep= L~,=1+8P+-p2 + L ,+ L , (43)

n~l n. 2 n~O (2n+3). n~O (2n+4).

and observe that the last two terms have the representations

SAS 32:3/4-L
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00 (8P)2"+3 ~. ~I ( ), = ~(8 sin 8 - sin 28 - 68)P +~(2 sin 8 - sin 28)P3 (44)
n~O 2n+3.

00 (8P)2n+4I = 112(15-682_16cos8+cos28)P2+/2(3-4cos8+cos28)P4, (45)
n=O (2n+4)!

which follow from eqns (41), (42) and the series expansions for sin 8, cos8, sin28 and
cos 28. Combining these last three results, it follows that

eBf' = 1+~(8 sin 8-sin28)P+ /2(15 -16 cos 8+cos 28)P2

1 ~ 3 1 ~4+;;(2sin8-sin28)P +12(3-4cos8+cos28)P. (46)

Using the trigonometric double-angle formulae, eqn (46) becomes

and it follows from formula (4) that

(48)

4. EXAMPLE: APPLICATION OF THE SIX-DIMENSIONAL FORMULA TO MONOCLINIC
MATERIAL SYMMETRY

The monoclinic crystal system has exactly one plane of reflective symmetry (Cowin
and Mehrabadi, 1987; Gurtin, 1972; Hearmon, 1961; Lekhnitskii, 1963; Fedorov, 1968).
A material is said to have a plane of reflective symmetry or a mirror plane at a point if the
structure of the material has reflective or mirror symmetry with respect to a plane passing
through the point. The formulae (1) and (4) apply to the planes of reflective symmetry;
one has only to set the angle of rotation equal to 1L The reflection transformation in three
dimensions is denoted by R and defined by

R= -Q(n,p) = -e"P;

it follows from eqns (1) and (3) that R has the representation

The reflection transformation in six dimensions is denoted by Rand defined by

(49)

(50)

(51)

The fact that the definition of R contains a minus sign and that for Rdoes not, stems from
the fact noted at the end of section 2, namely that the components of Q are squared to
determine the components of Q. It follows from eqn (5) that Rhas the representation

(52)

The normal to the plane of mirror symmetry is taken to be in the e1direction; thus p = e1
and from eqns (5) and (52) it follows that
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1 0 0 0 0 0

0 1 0 0 0 0

R=
0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 -1 0

0 0 0 0 0 -1
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(53)

Monoclinic material symmetry requires that the matrix of tensor components of the
elasticity tensor,

Cll CI2 C I3 CI4 CIS CI6

C12 C22 C23 C24 C25 C26

c= CI3 C23 C33 C34 C35 C36
(54)

CI4 C24 C34 C44 C45 C46

CIS C25 C35 C45 C55 C56

C I6 C26 C36 C46 C56 C66

be invariant under a reflection. By invariant we mean that the components of creferred to
the original and the reflected coordinate system must be the same, that is to say

thus the components of cmust satisfy the condition

c= RcR.

(55)

(56)

Substitution of eqns (53) and (54) into eqn (56) and the subsequent matrix multiplication
yield

1 0 0 0 0 0 cll c12 C13 C14 CIS CI6

0 1 0 0 0 0 c12 C22 C23 C24 C25 C26

0 0 I 0 0 0 c13 C23 C33 C34 C35 C36c=
0 0 0 1 0 0 CI4 C24 C34 C44 C45 C46

0 0 0 0 -I 0 CIS C25 C35 C45 C55 C56

0 0 0 0 0 -1 C I 6 C26 C36 C46 C 56 C66

I 0 0 0 0 0 Cll C12 C13 CI4 -CIS -C16

0 I 0 0 0 0 CI2 C22 C23 C24 -C25 -C2 6

0 0 I 0 0 0 CI3 C23 C33 C34 -C35 -C36

0 0 0 1 0 0 C I4 C24 (;34 C44 -C45 -C46

(57)

0 0 0 0 -1 0 -CIS -C25 -C3 5 -C45 C55 C56

0 0 0 0 0 -1 -C16 -C26 -C36 -C46 C56 C66

From eqn (57) it is clear that cis not invariant under the reflection Runless

CIS = C25 = C35 = C45 = C I6 = C26 = C36 = C46 =0; (58)

thus cis given by
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Cll Cl2 C13 C14 0 0

Cl2 Cn C23 C24 0 0

C13 C23 C33 C34 0 0
c= (59)

C14 C24 C34 C44 0 0

0 0 0 0 C55 C56

0 0 0 0 C56 C66

There are 13 distinct elements of cfor monoclinic symmetry in the representation (59), but
an arbitrary rotation in the plane of reflection can be used to eliminate one of the 13
elements (Fedorov, 1968).
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APPENDIX. AN ALGEBRAIC DERIVATION OF THE REPRESENTATION OF RIGID OBJECT
ROTATION IN THREE DIMENSIONS

The representation (1) of a three-dimensional rotation by an angle eabout the axis p is developed here using
algebraic methods of functions of matrices. It is known (Finkbiner, 1960; Frazer et al., 1960; Mirsky, 1990) that
if A and B are square matrices of scalars, then the exponential function of matrices

w An
eA

= L­
n=l n!

has the following properties:

, detA

e-A= {eA}-1 eA = {eA}T - = AetA = etAA A = constant, , dt ' .

(AI)

(A2)

(A3)

Using these properties it is easy to show that if W is skew-symmetric and B = eXw, then B is orthogonal. Since the
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rotation matrix Q is orthogonal, it can be written as an exponential matrix function of a product of a skew­
symmetric matrix, say P, and the angle e,

(A4)

It follows from eqn (AI) that Q may be expressed as an infinite series,

e e2 eJ enQ=1+_P+_P2 +_p3 + +_pn + __
I! 2! 3! n!-

and since, from eqn (3), p3 = -P, it follows that

p2n+! = (_I)np, p2n+2 = (_I)"p2

The infinite series (A5) may be reduced to a sum of a finite number of terms,

recovering the representation (I) again_

(A5)

(A6)

(A7)


